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The concept of wall influence zonss in a turbulent boundary layer on
a plate is introdaced, Using these zones, the formulas obtained for cal-
culating heat transfer and friction forces for steady conditions at the
wall are extended to include variable conditions.

A large number of theoretical and experimental
investigations have been performed to study turbulent
boundary layers on plates for steady conditions over
the entire length of the plate. Simple expressions,
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Fig. 1, Schematic drawing of the position of the
influence zone at the wall.

convenient for use in engineering computations, have
been obtained for the heat flow, shear stress, and
boundary-layer thickness for a gas with constant phys-
ical parameters in the boundary layer, For Reynolds
numbers ranging from 10° to 10?, these expressions
have, respectively, the form [1,2]:
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In most cases of practical interest, however, the
surface temperature is not a constant. Then, the heat
flow calculated from formula (1), derived under the
assumption of a constant surface temperature, can
differ appreciably from the actual flow. Allowance for
the variability of the surface temperature can bemade,
in a relatively simple way, with the aid of Seban's and
Rubesin's formulas, obtained by applying the integral
method to the analysis of the thermal boundary layer
that develops within a dynamic layer [3,4].

The literature lacks formulas for calculating shear
stress for flows past a surface, a portion of which is
in motion (for example, during the formation of a fluid
film on the surface), while shear stress computations
from formula (2) can lead in this case to results that
are erroneous even with respect to the direction in
which the friction forces are applied. It is, therefore,
desirable to obfain an appropriate and, atthe sametime,
simple method with which heat flows and shear stresses
can be calculated for a variety of boundary conditions.

Definition of influence zones. It is proposed to ex-
tend formulas (1) and (2) to include stepwise~discon-
tinuous conditions at the wall by replacing the charac-
teristic values of the velocity Vp and temperature T,
at the boundary~layer boundary &, by the correspond-
ing velocity Vgand temperature Ty values at the bound-
ary of the internal boundary layer that develops from
the area s where the conditions at the wall begin to
vary {see Figure 1). In this case, the linear dimension
x should be replaced by x ~ s. '

Similar to the approaches used by Rubesin and
Seban, this approach is based on the physical pre~
requisite of the existence of such an internal layer that
would concentrate in itself all the effects associated
with the variability of the boundary conditions, In the
present paper, the boundary of this layer is deter-
mined from formula (3) with allowance for the afore-
said changes in the characteristic values, i.e.,
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This internal layer will be termed the "influence zone"
of cross section s. In accordance with definition (4},
the boundary layer with the boundary 64(x) is also the
influence zone for s = 0,

We assume that the parameters of the gas beyond
the influence zone (including the boundary of the zone)
remain constant regardless of the natureofthe changes
in the boundary conditions at the wall. This condition
makes it possible to determine the boundary of the
influence zone and, correspondingly, the velocity and
temperature values at this boundary for steady condi-
tions at the wall, If the velocity and temperature dis-
tributions are assumed to obey the power law
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by analyzing relations (4) and (5) simultaneously, we get
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The relations obtained for Vg and Tg will be used in
the solution of problems with variable conditions at
the wall to be examined below as applications of the
method proposed.

Hest transfer in the case of a variable wall temper-
ature, Let us examine the flow past a plate of turbulent
gas having a temperature T and a velocity Vg, The
temperature of the plate from its leading edge to cross
section s is kept constant and equal to Ty,. Further
downstream, the surface temperature of the plate
changes abruptly to Tyg. For simplicity, and for
clearer representation of the results obtained, we
shall assume in the following that the changes in the
characteristic physical parameters, which result
from changes in the wall temperature, are negligible
as compared with the absolute values of these param-
eters (| Tws — Twy] < Twe)-

According to the method proposed, expression (1)
for the heat flow at x > s must be converted to the
form
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Substituting the values for Vg4 and Ty from the rela-
tions () into relation (7) for the condition Twg = Tws,
we get g5{x) = gei{x). Consequently, fo calculate the
heat flow for steady conditions at the wall, one may
substitute into formula (1) an arbitrary linear dimen-
sion x — ¢ and the corresponding values for the veloc~
ity and temperature at the boundary of the influence
zone of section s. Although, strictly speaking, the
"1/7 law" for the distributions of V and T is not appli-
cable to a laminar sublayer, the fact that relation (7)
holds for the case Tyg = T, justifies to a certain
extent the use of the heat transfer model proposed for
values of 1 — (s/x) < 0,001, which correspond to the
region of the laminar sublayer.

For the condition Ty,q = Ty, in the problem under
consideration, expression (7) yields
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In the case where the wall temperature from x = 0
to X = & coincides with the gas temperature (Ty, = Ty),
formula (8) takes the form
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Formula (9) does not differ significantly from Seban's
formula
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Figure 2 gives the results of calculations from for-
mulas (9) and (10), and for comparison also experi-
mental data [3] obtained at Reynolds numbers ranging
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Fig. 2. Comparison of theoretical and experimental

data for a stepwise varying surface temperature:

1) from formula (9); 2) from Seban's formula (10);
3) experimental data [3].

from 5- 10° to 4. 10°, Tt can be seen that the relations
(9) and (10} correlate well with the experimental data.

Comparing the results obtained from formulas (9}
and (10), it becomes evident that the difference be-
tween them is maximum, and equal to 1.2% for x ~ s,
while for x > g, it decreases monotonically, Since
this difference lies within experimental uncertainty,
it should be noted that formula (8) deserves preference
over formula (10} inasmuch ag it involves less com~
putational labor.

In the case of an arbitrary wall temperature distri-
bution for x = s, the results obtained for a stepwise
varying temperatures can be generalized {(as shown in
4]} by summing up the heat flux increments of all the
area elements. Generalization of formula (8) to include
the case of a continuously varying wall temperature
leads to the expression
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Shear stress at a moving surface, Let us examine
a turbulent gas flowing at a velocity V; past a plate.
The fairing of the plate between the leading edge and
x = s is at rest, while further downstream it moves at
a constant velocity Vyg in the same direction as the
gas, In accordance with the method proposed, expres-
sion (2) for the shear stress at x > s should be trans~
formed as
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Substituting V¢ from (6) into this formula, we get

where 7¢(x) is the shear stress at the cross section
under consideration for a surface in the state of rest.
From an analysis of expression (11), it follows that,
in the case of Vy > Vg, the ratio 7¢/7, for x = s is
negative, i.e., that the friction forces applied at this
point to the moving surface are directed opposite to
the gas flow.

If formula (11) is generalized to include a contin-
uously varying velocity of the surface, in the same
manner as formula (8) was extended to include an
arbitrarily varying wall temperature, one can obtain
the following expression for the shear stress at a
moving surface:
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This expression and formula (11) still require experi-
mental verification.

All the relations in this paper were obtained under
the assumption that the velocity and temperature dis-
tributions in the boundary layer are governed by law
(5) with an exponent of 1/7. Similar relations can be
obtained also for an arbitrary exponent 1/n (n = 1), In
this case, in accordance with [2], the exponents of the
Reynolds numbers in the expressions (1)—(3) must be
n+1)/(n+3), n+1)/(n+3), and —(2/(n + 3)), re-
spectively. With the aid of operations similar to those
performed with formulas (1)-(5), the expressions (6)
for the boundary of the influence zone and for the ve-
locity and temperature at this boundary take the form
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while expression (8) for the heat flow and expression
(11) for the shear stress will transform to
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NOTATION

V is the velocity; T is the temperature; p is the
density; cp is the specific heat; p and A are the vis-
cosity and heat conduction coefficients, respectively;
q is the heat flow; T is the shear stress; 6 is the bound-
ary layer thickness; x is the distance from the plate
leading edge to the cross section under consideration;
s is the length of the initial portion of the plate with
stable conditions at the wall; St is the dimensionless
heat-transfer coefficient (Stanton number); subscript
0 refers to parameters in the case of stable conditions
at the wall; subscripts s refer to parameters in the
case where a boundary layer forms at cross section s.
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